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Abstract—State-of-the-art machine learning models have been
used for a plethora of Sound Event Detection (SED) applications,
including bird vocalization detection, which plays a significant
role in monitoring the overall ecosystem health. However, many
popular models are characterized by high complexity and,
therefore, are rather unsuitable for operating on IoT edge devices.
To address this limitation, this paper proposes a lightweight
Convolutional Neural Network with emphasis on edge computing.
The proposed architecture achieves an accuracy measure of
86.42% on a bird audio detection task with only 73,377 trainable
parameters.

Index Terms—Convolutional Neural Network, Lightweight
CNN, Machine Learning, Sound Event Detection, Bird Audio
Detection

I. INTRODUCTION

Sound event detection is a task that involves locating and
classifying specific types of sound in audio data from real-
life environments [9]. Examples of sound detection could
be speech recognition, monitoring animal sounds or music
classification. There is a wide variety of sound detection tasks,
such as the simplistic binary presence (absence) problem or the
more complex polyphonic segmentation where different types
of sound in the same audio clip are identified. Considering,
however, that diverse sounds can overlap in a real-life envi-
ronment, even binary classification can be challenging. This
observation is the primary motivation of this work relating to
bird audio detection.

Bird audio detection is important for both scientific and
environmental purposes. The last few years bioacoustics has
become a Big Data research area, providing huge amounts
of audio data that cannot be inspected manually, and ad-
dresses the need for this process to be fully automated [1].
Bird detection usually aims to monitor population densities,
migration patterns, and provides valuable information about
the health of the overall ecosystem. Additionally, examining
the presence/absence of birds in the environment can be used
as filtering in order to reduce the amount of data for further
species identification.

Machine learning models constitute a very helpful tool in
audio detection [1]. State-of-the-art models such as Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks
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(RNNs), Support Vector Machines (SVMs), Gaussian Mixture
Models (GMMs) etc., can produce very accurate results in
sound detection and classification projects. Unfortunately, de-
ploying complex Machine Learning models, especially Deep
Learning models that have millions of trainable parameters,
in embedded devices that operate at the edge of Internet
of Things (IoT) networks is not straightforward. Low-power
embedded devices are very limited in terms of storage space,
RAM, and computational resources [6]. In order to exploit the
benefits of IoT edge computing, including performance, energy
efficiency and security, it is important to design lightweight
Machine Learning (ML) models that do not require consider-
able resources to operate.

This paper describes the procedure of designing a low
complexity CNN for bird sound binary classification. The pro-
cedure starts with the necessary data preprocessing, continues
with the step-by-step selection of the optimal parameters1 and
concludes with the presentation of the final CNN architecture.
The proposed CNN achieved 86.42% accuracy with less than
100 thousand trainable parameters.

The rest of the paper is organized, as follows: Section II
describes succinctly previous works related to the domain
of bird audio detection. Section III describes our approach
to solve a bird detection problem. The proposed framework
for deploying an edge-IoT platform for this task is also
introduced in Section III. Experimental results that highlight
the superiority of the proposed solution are given in Section
IV. Finally, Section V concludes the paper.

II. RELATED WORK

CNNs have been used to investigate the problem of animal
sound classification [13]. By using a collection of 875 animal
sound samples containing 10 types of animals, they obtained
a maximum accuracy of 75% with Nadam optimizer. In 2016,
Stowell et al. started a Bird Audio Detection (BAD) challenge
[1]. The participants were asked to design different algorithms
that predict the presence or absence of bird chirps in audio
files. The main goal of the challenge was to achieve an Area
Under Curve (AUC) measure as high as possible on a hidden

1Network parameters include number of layers, kernels etc. Trainable
parameters are the weights.
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dataset. The provided training data came from freefield1010
[14] and Warblr [15] (development set), while the unseen
testing dataset came mostly from the TREE research project2.

The contestants presented a wide variety of Machine Learn-
ing Algorithms. Recently Thomas Grill and Jan Schlüter
presented two independent feedforward CNNs applied to mel
spectrograms, named bulbul and sparrow, achieving 88.7%
AUC and 83.7% AUC, respectively [2]. Cakir et al. combined
convolutional layers with recurrent layers to create a CRNN
applied to mel band energies, thereby obtaining an AUC
measure of 88.5% [3]. Thomas Pellegrini proposed a DenseNet
architecture and managed to achieve 88.22% AUC score on
the unknown data [17]. Additionally, the DenseNet obtained
an accuracy of ∼90% on the validation dataset. Another
novel approach was based on Archetypal Analysis [4]. The
classification was performed using SVMs with a dynamic
kernel and a variant of probabilistic sequence kernel, achieving
an accuracy of 85.2% on the development dataset. Thakur
et al. also worked with SVMs with a dynamic kernel and
demonstrated a procedure that leads to a 70% speedup for the
proposed method with a very small drop in accuracy [5].

III. THE PROPOSED FRAMEWORK

Inspired by the BAD challenge, we propose a new bird
detection model with emphasis on edge devices. Thus, the
introduced machine learning model aims at low complexity
and storage requirements. However, as we highlight at the
experimental results section, the impact of these architectural
selections is negligible (about 4–5%) as compared to the
most accurate prediction models. Since the bulbul architecture
was the winning submission, we choose to work with CNNs
applied to mel spectrograms. However, our approach differs in
the sense that in contrast to the challenge demands, we do not
aim to construct an as accurate as possible CNN. The objective
is to create a lightweight CNN that has a small number of
layers and trainable parameters tailored to real-time inference
on embedded devices characterized by limited computational
resources while obtaining a prediction accuracy above 85%.
Indeed, the important trade-offs among accuracy, power, and
computing and storage resources for this problem have not
been explored. In this paper, therefore, we present a structured
step by step methodology with the aim of designing a CNN
architecture from the ground up that highlights these trade-
offs.

A. Proposed Decision-Making Algorithm

Each audio clip is sampled with a sample rate of 22.05 KHz
and Short-Time Fourier Transform (STFT) with a window
size of 2,048 samples and a hop size of 512 samples (75%
overlapping) is applied, generating frames that last 93 msec.
Subsequently, frequencies are converted onto the mel scale
and finally, we apply 128 mel scaled filter banks to capture
the energy of 128 frequency bands. This way, 431×128 shaped
mel spectrograms are extracted. Mel spectrograms are image

2https://wiki.ceh.ac.uk/display/NRT/NERC+RATE+TREE+Home

representations of sound, where every pixel contains the value
of sound intensity (in dB) at a specific mel frequency band.
Such a spectrogram is illustrated in Figure 1. Since bird call
intensity can vary on different sound samples, it is important to
normalize the dataset such that the intensity values are within
the same range.

Each convolutional layer consists of a number of kernels.
A kernel is a matrix of weights that scans the input data (in
our case images) in order to extract certain features through
convolution. When all the kernels move over the data, they
forward a stack of images to the next layer. Since the desired
architecture is a lightweight CNN, we initially choose a
relatively small number of 32 kernels per layer with a size of
3×3. The stride value describes the number of rows or columns
the kernels move by while scanning the data. We select a stride
value of 2 for the purpose of scanning the image faster and
reducing train and inference time.

Fig. 1. Mel spectrogram showing bird chirps at 2s and 9s.

Additionally, the size of the image decreases by ∼75%
after each layer, leading to a smaller number of trainable
weights where the output of the last convolutional layer
is connected to a dense layer used for classification. Each
convolutional layer uses a ReLU activation function, while
the output layer uses a Sigmoid function for classification.
The Sigmoid function output has a value range between 0 and
1 and can be considered as the probability of bird presence in
a data instance. During training, the weights are adjusted by a
function or algorithm called optimizer. The optimizer modifies
the weights and determines the optimal values that minimize a
loss function. A loss function computes the error between the
expected value and the output model value. Adam optimizer
is a good solution, suitable for a variety of machine learning
models and converges very quickly [7]. The initial learning
rate is 0.001. The learning rate determines how quickly
the CNN weights adjust. As a loss function, we pick the
binary cross-entropy, which is the standard function for binary
classification. Although adding more layers usually improves
accuracy, it has a negative impact on training and inference
time due to increasing number of trainable parameters and
computational cost. Therefore, we limit our solution space
to network architectures with a maximum of 5 convolutional
layers. We also add a fully connected layer with 128 neurons
to enhance classification accuracy. Afterwards, we resize the
images and test our CNNs in order to explore how the input

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 19,2024 at 08:01:07 UTC from IEEE Xplore.  Restrictions apply. 



shape affects the aforementioned tradeoffs for models with a
different number of convolutional layers.

A common issue with machine learning models is over-
fitting, meaning that the model memorizes the training data.
As a result, the model is not able to generalize well on new
examples, leading to deteriorating accuracy. Regularization
techniques address the issue of overtraining by reducing the
generalization error. Dropout is a widely used technique that
temporarily removes units from the network, along with all its
connections [8]. The choice of the eliminated units is random
and depends on a fixed probability p. We choose a value of
0.5, since it is close to optimal for a variety of tasks [8].

Convolutional layers are frequently preceded by pooling
layers. These layers downsample the map features with the use
of a filter while extracting the most valuable information and
eliminating irrelevant features that can be considered as noise.
By reducing the spatial dimension of the input, it lowers the
number of trainable parameters and minimizes computational
cost. At the same time, it improves the CNN’s performance
by preventing overfitting [10]. There is a wide variety of
popular methods e.g., max and average pooling. We choose
max pooling, since it is extensively used in CNNs and is more
effective on simple classifiers. The starting filter size is 2×2
and scans the data with a stride value of 2.

The next step of designing the algorithm is to try out using
a larger kernel size for some layers in order to examine if
large-scale features contain useful information. We have to
take into consideration that using 5×5 kernels will increase
the number of the network’s trainable parameters. Another
kernel adjustment would be changing the number of kernels
per layer. For instance, after consecutive downsampling of the
input data, the image size is much smaller and, hence, it may
be preferable to decrease the number of kernels used in the
last convolutional layer to avoid irrelevant information. Those
modifications could be a part of a fine tuning process. Keras
[11] and Tensorflow [12] offer tuning algorithms that select
the optimal values for a wide variety of network parameters,
such as different optimizers and learning rates, training and
testing batch sizes, stride values or dropout probabilities p.
In case the parameters we want to adjust are too many to
be examined manually, fine tuning algorithms speed up the
process of ironing out the last details to achieve the best
accuracy performance. However, we have to ensure that these
changes do not have a negative effect on the desired tradeoffs.

For the last step of the design process, we use 5-fold cross
validation. Through this procedure, 20% of the data is held for
later testing. The rest of the dataset is split randomly into 5
equally sized folds. We train our CNN five times, using 1 fold
as the validation set and the remaining 4 folds as the training
set. This way, we can choose the model that demonstrates the
highest accuracy as the final CNN to be deployed for inference
on an embedded device. In Figure 2, the entire procedure of
designing the CNN can be seen in the form of a flowchart.

Fig. 2. The proposed method in the form of a flowchart.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The dataset comes from merging the freefield10 [14] and
Warblr [15] and consists of 15,690 audio files, most of which
are 10 seconds long, except from a minority that slightly
differs in duration. Raw audio data, however, is not suitable
for CNNs. Hence, some preprocessing of the data is required,
where we recreate the dataset using a fixed length of 10 sec in
order to extract mel spectrograms. Before feeding the data into
the CNN for training, we normalize the data using scaling and
change the range of the distribution of pixel values to (0,1).
An alternative solution would be to apply Batch Normalization
[16] on the convolutional layers. We avoid this approach due
to additional computational cost. After preprocessing, we split
the data into training (80%) and testing (20%) sets.

The initial series of experiments explores the effect of
adding convolutional layers to the network. We train 5 different
CNNs with an ascending number of convolutional layers for
30 epochs, keeping 20% of the training set for validation.
After each training epoch, we store the value of the loss
function in order to detect how many epochs have passed
until the error is minimum and retrain the model for the
same amount of epochs. By decreasing the number of training
epochs, overfitting is reduced.

The results reported in Table I show that more layers do
not necessarily lead to improved performance. Convolution
with stride value of 2 decreases the input size rapidly. As
a result, after adding a certain number of layers, the image
no longer contains valuable information for feature extraction,
leading to a significant drop in accuracy. However, having
a small output size at the end of the convolution implies
fewer connections with the dense layers used for classification.
Furthermore, due to a larger amount of computations, the
training time increases along with the number of layers. The
networks comprising less than 3 convolutional layers contain
millions of trainable parameters. Due to the limited storage
space, they are considered unsuitable for deployment on edge
devices. The CNN that has 4 convolutional layers is considered
acceptable, since it has fewer than 200K trainable parameters.
However, we keep exploring the solution space to see if we
can further improve our architecture.

In order to decide upon the optimal number of layers for
our network, we repeat the experiments for different input
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TABLE I
THE EFFECT OF LAYER NUMBER ON CNNS

Conv. Accuracy Training time Trainable
Layers (sec) parameters

1 77.50% 1841.56 13,587,009
2 79.22% 2295.72 3,266,145
3 79.92% 2521.46 764,545
4 81.99% 2713.91 188,065
5 79.73% 2767.64 62,145

sizes. We change the number of mel frequency bands of the
spectrogram from 128 to 80. Since we move towards reducing
the image size, we eliminate the possibility of using more
than 4 convolutional layers. The CNNs demonstrate significant
improvements with an input shape of 431×80. Apart from the
fact that the number of trainable parameters and the training
time are reduced, every CNN exhibits an increase in accuracy
by ∼2-2.5%. The networks with 3 and 4 convolutional layers
yield an accuracy of 81.45% and 84.67%, respectively. The
former consists of 445,057 trainable parameters and requires
∼1580 sec for training and the latter has 134,817 trainable
parameters and completes training in ∼1601 sec. The amount
of trainable weights for the models with 1 and 2 convolutional
layers remains prohibitively high to fulfill our requirements.
Conducting the same experiments with 431×64 and 216×80
shaped images results in lower accuracy such that we conclude
that the optimal combination is a CNN with 4 convolutional
layers (CNN-4) and an input size of 431×80. Nevertheless,
we also test CNNs with 3 convolutional layers (CNN-3), in
case we can further reduce the weight number and improve
accuracy.

After limiting the space solution, we use regularization to
reduce overfitting. We mentioned before that we used optimal
epoch selection and retrained the networks for the same reason.
However, due to the stochastic nature of CNNs, the epoch
selected as optimal can differ during retraining and, hence, it
may not always prevent overfitting. Using regularization solves
this problem because the loss function value changes more
slowly and reduces the overfitting probability. By applying
dropout with 0.5 probability on every convolutional layer, the
CNN-3 performs better and achieves an accuracy of 83.46%,
but requires 4668 seconds to train, meaning that the network
becomes 3 times slower. The accuracy of CNN-4 remains
approximately the same and its training time triples as well
(5246 sec). At a later stage of the designing process, we
realize that applying dropout only on the last convolutional
layer and the fully connected layer has a negligible impact on
the training time and helps with overfitting prevention.

In order to further improve the CNN accuracy, we apply
max pooling after each convolutional layer. Since pooling
filters scan the images similarly to the convolution kernels,
using a stride value of 2 for pooling layers as well would
decrease the image size significantly, leading to information
loss. To exploit the advantages of max pooling, we rearrange
the kernel strides. The key is to modify the network layers

in such a way that the output size of the last convolutional
layer minimizes connections with the dense layers used for
classification, without causing a drop in accuracy. Table II
shows the enhancement in performance after applying max
pooling layers and dropout regularization with a probability
of 0.5 to the networks.

TABLE II
RESULTS AFTER APPLYING MAX POOLING AND DROPOUT.

Conv. Accuracy Training time Trainable
Layers (sec) parameters

3 85.95% 1712.52 68,225
4 86.42% 2042.82 73,377

As we can see, the two models perform very closely. Since
the difference in trainable parameters and training time is
insignificant, we choose CNN-4 as our final CNN. Inference
time is measured to be 4 sec for the classification of 3,138
images.

Before concluding our designing procedure, we perform
manual fine tuning. Replacing the 3×3 kernels of the first
convolutional layer with 5×5 kernels does not improve accu-
racy. Furthermore, we retrain the model with different learning
rate values. Using a learning rate of 0.01 leads to a ∼3% drop
in accuracy, while a value of 0.0001 results in 85% accuracy
and increased training time. Thus, the initial learning rate turns
out to be optimal. The final CNN architecture is depicted in
Figure 3.

Fig. 3. The proposed CNN architecture.

Finally, we apply 5-fold cross validation on the proposed
CNN to observe the effect different data partitions have on
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the model’s performance. The CNN is trained for 5 different
combinations of training and validation data. The evaluation
results on the testing set are listed in Table III.

TABLE III
RESULTS EVALUATION WITH CROSS VALIDATION.

Fold Fold Fold Fold Fold
1 2 3 4 5

Accuracy 85.91% 86.17% 85.56% 86.20% 85.66%

It is clear that the way the dataset is split plays a significant
role in accuracy performance. Since the audio data is collected
from real life environments, it is possible that there are signif-
icant dissimilarities among data instances due to vocalizations
of various species, background noise or weather conditions.
Thus, different features are extracted from separate data sam-
ples, leading to various results in accuracy measurements.
It is important to mention that even retraining a machine
learning model with the exact same data can lead to different
results, due to random initialization of the trainable weights.
Nevertheless, we have not explored optimal data partition and
weight initialization where these tasks are left as future work.
The procedure we follow turns out to be very efficient, since
it leads to a low complexity architecture that achieves an
accuracy measure above 86%.

Before concluding the paper we compare our final model to
the DenseNet architecture proposed by Thomas Pellegrini [17],
which ranked 3rd among 30 Bird Audio Detection challenge
participants. The DenseNet consists of 74 layers with a total
of 328K parameters and leads to an accuracy measure of
∼90% on the validation dataset. Our CNN shows a ∼3.5%
drop in accuracy measured on the same dataset by using only
22.3% of the DenseNet parameters and comprises 5 layers
in total, leading to much lower computational complexity.
Unfortunately, we do not have access to the hidden test dataset
used in the Bird Audio Detection challenge and, hence, we are
unable to do a proper comparison with the other participants’
work.

V. CONCLUSIONS

This paper presents a lightweight CNN architecture for bird
audio detection using features that are extracted from mel
spectrograms. The primary focus of this research is to design a
low complexity network that is suitable for deployment on IoT
edge devices. The limited number of layers and kernels results
in low computational cost. Moreover, max pooling layers with
a stride value of 2 decrease the input size while preserving
important features and, hence, thereby reducing the number
of trainable parameters without causing a drop in accuracy.
The proposed CNN achieved up to 86.42% accuracy score
with only 73,377 trainable parameters.
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[13] E. Şaşmaz and F. B. Tek, “Animal Sound Classification Using A
Convolutional Neural Network,” Int. Conf. on Computer Science and
Engineering, 2018, pp. 625–629.

[14] D. Stowell, and M. Plumbley, “An open dataset for
research on audio field recording archives: freefield1010”,
(https://arxiv.org/abs/1309.5275)

[15] [Online]. Available: http://warblr.net (accessed on 21/09/22).
[16] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift”, Proc. of Int.
Conf. on Machine Learning, Vol. 37, pp. 448—456, July 2015.

[17] T. Pellegrini, “Densely connected CNNs for bird audio detection,”
European Signal Proc. Conf., 2017, pp. 1734–1738.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 19,2024 at 08:01:07 UTC from IEEE Xplore.  Restrictions apply. 


