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Abstract—Recently, there is a continues demand for embedded
systems that automate buildings’ operation, such as the control
of Heating Ventilation and Air-Conditioning system (HVAC)
operation. These systems exhibit increased complexity and their
operation relies less on human decision-making and more on
computational intelligence. The efficiency of these systems is
usually bounded by the orchestrators’ flexibility to optimize
simultaneously multiple, and usually contrary, objectives. This
paper introduces a novel framework for designing model-free
orchestrators targeting to optimize the operation of HVAC
systems, is introduced. The proposed orchestrator relies on
Reinforcement Learning in order to support self-adaptive cus-
tomization. Experimental results highlight the superiority of
introduced orchestrator, as it achieves comparable performance
to state-of-the-art relevant controllers without any prior detailed
modeling.

Index Terms—Model-Free Optimization, Multi-Objective Op-
timization, Smart Thermostat

I. INTRODUCTION

Buildings are increasingly energy-demanding and it is ex-
pected to consume even more in the future. The amount
of energy consumed in European Union’s buildings reaches
around 40—45% of the total energy consumption, where two-
thirds of this energy is used in dwellings [1]. More specifically,
Heating, Ventilation and Air-Conditioning (HVAC) is the
largest contributor to the building’s energy cost, as they are
rarely configured with a static (non-optimal) way. On top of
that, residents adjust manually the thermostats several times
a day, while programmable thermostats are too difficult for
the majority of people to be used effectively. To make matters
worse, it is typical households with programmable thermostats
to have higher energy consumption on average than those with
manual controls because users program them incorrectly or
disable them altogether.

Moreover, as the physical world is bound by unpredictabil-
ity, it is not prudent to expect the HVAC control system to
be operating in a fully-controlled environment; thus, solutions
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that rely on robust and self-adaptable to unexpected conditions
controllers are of upmost importance. Formally, self-adaptivity
refers to systems that adjust their behavior autonomously
in response to external events unpredictable, or unforeseen,
at design time [2]. The orchestrators’ selections are usually
defined according to the HVAC system’s cost function, which
considers multiple objectives that have to be compromised
simultaneously. Hence, novel solutions able to perform optimal
configuration of HVAC systems are upmost necessary.

Recently, a new generation of systems with integrated
computational and physical capabilities, also known as Cy-
berPhysical Systems (CPS), have been introduced. The new
design paradigm interacts with, and expands the capabilities
of, the physical world through monitoring, computation (i.e.,
distributed coordination) and communication mechanisms. By
pooling the system’s resources and capabilities together re-
sults to a new, more complex system which offers addi-
tional functionality and performance than simply the sum
of the constituent sub-systems. The CPS approach offers a
better resolution of the physical world and therefore a better
capability of detecting the occurrence of an event; hence,
it is expected to play a key role in the development of
next-generation autonomous systems, especially for the smart
building environment.

Although promising, the efficiency of these HVAC control
mechanisms relies mainly on the employed algorithms that
perform system’s orchestration under real-time constraints. Ex-
isting approaches towards this direction rely on computational
intensive decision-making algorithms that are executed onto
powerful processing core(s). In accordance to the previously
mentioned challenges, throughout this paper we introduce a
general-purpose framework for HVAC orchestration, where
two conflicting objectives, namely the overall energy con-
sumption and the occupants’ thermal comfort have to be
compromised at run-time. In contrast to relevant solutions, the
proposed orchestrator focuses on partial, or fully unknown,
cost functions.
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II. RELATED WORK

The HVAC system’s orchestration is a well-established chal-
lenge that has been extensively analyzed. Despite the signifi-
cant progress made in optimal nonlinear control theory [3] [4],
existing methods are not, in general, applicable to large-scale
systems because of the computational difficulties associated
with the solution of the Hamilton-Jacobi partial differential
equations. According to literature there are two mainstream
ways for deciding upon HVAC system’s orchestration. In
detail, the first category corresponds to systems that provide
online decision-making [5], while the latter approach relies on
Model Predictive Control (MPC) techniques [6] [7]. Although
MPC for nonlinear systems has been successfully applied in
various domains [6] [8] [9], it likewise encounters dimension-
ality issues: in most cases, predictive control computations for
nonlinear systems amount to numerically solving a non-convex
high-dimensional mathematical problem [10], whose solution
may require formidable computational power for supporting
online decision-making. Regarding the micro-grid case study,
the online algorithms exhibit limited efficiency compared to
MPC solvers, but they are reactive to real-time constraints
(e.g., indoor/outdoor temperature and humidity, solar radiation,
occupants behaviour, state of neighboring thermal zones, etc)
[7] [5]. On the other hand, the efficiency of MPC solvers
relies on a detailed model of the target system to simulate the
impact of alternative control strategies [6]. The fact that the
detail system’s modeling is too complex coupled with the need
of the MPC algorithms to be delivered prior to the system’s
deployment create problems for building low-cost model-free
solutions.

Although the aforementioned techniques are in-line with
the concept of a model-free HVAC orchestrator discussed
throughout this manuscript, they exhibit limited flexibility.
Specifically, both supervised and unsupervised machine learn-
ing algorithms impose excessive training complexity, which
cannot be tackled with a low-cost embedded platform (i.e. a
smart thermostat) under run-time constrains. Similarly, fuzzy
rules cannot “learn” effectively (e.g. in terms of accuracy
and execution run-time) the CPS’s behavior for unexpected
operating conditions. Consequently, a pre-training phase per
case study (e.g. type of building, different HVAC systems,
variations at weather conditions, etc) is necessary. To address
this challenge, another class of decision-making algorithms,
also known as Reinforcement Learning (RL), have been
proposed. In detail, based on RL decisions, the orchestrator
take actions to maximize some notion of cumulative reward.
During the last years, there us a continues demand for solvers
that aim to address the HVAC system’s orchestration with
RL algorithms [11] [12] [13] [14]. However, none of them
introduces a model-free approach, similar to the one discussed
throughout this manuscript.

III. PROPOSED MODEL-FREE HVAC ORCHESTRATOR

This section introduces the template of our case study,
which corresponds to a micro-grid environment, which in-
cludes multiple energy sources (e.g., solar, wind, bio-gas)

and nodes that are in need of energy, such as the HVAC
systems. In order to support the HVAC control task, a number
of sensors acquire weather data (i.e. temperature, humidity
and solar radiation), building conditions (indoor temperature
and humidity), as well as the residents activity per thermal
zone. This data is transferred to the main controller in order
to compute optimal actions that co-optimize thermal comfort
and energy cost metrics.

A. Problem Formulation

Throughout this Section we discuss the analytical form of
the HVAC optimization problem. For this purpose, we model
a multi-objective optimization problem (MOO), formally de-
fined with Equation 1, where E and PPD give the two ob-
jectives (energy consumption and occupants’ thermal comfort)
under minimization. PPD corresponds to the Predicted Per-
centage of Dissatisfied occupants, while PPD ≤ PPDlimit

gives the thermal comfort constraints that have to be satisfied.
At this notation, αi is a the input variables that refers to
the temperature set-point of the target HVAC system in time-
step i. Finally, we consider that objective functions are also
related to an external vector of environmental variables si.
The proposed framework focuses to a subset of the general
MOO problem, where the cost function is expressed as a
weighted sum of single objectives [15]. However, the increased
complexity of contemporary buildings makes it prohibiting,
or even impossible, to consider at Equation 1 an accurate
analytical description while providing a Plug&Play solution;
thus, the definition of the problem that this manuscript aims
to solve is given by the Equation 1 coupled with the following
properties:

1) the detailed form of the objective functions (E and
PPD) is unknown;

2) the objective functions are not only related to the tem-
perature set-point, but also to the buildings environment;

3) by considering discrete time/events (time-steps), the
controllers actions are evaluated once per time-step;

4) the range of the Energy consumption (E) is unknown,
as no prior information is given.

Minimize : tr × E(αi, si) + (tr − 1)× PPD(αi, si)

subject to : PPD(αi, si) ≤ PPDlimit

(1)

In detail, according to the first property, the HVAC optimiza-
tion problem cannot be analytically defined at design time;
thus, a self-adaptive method is necessary. Furthermore, the cost
function is affected by building’s environment enlarging the
problem’s complexity. The third property corresponds to the
“penalty” of exploring the solution space. In the context of
this manuscript, the end-user is responsible for deciding upon
the weights (trade-off) selection. The proposed framework
provides proper automatic normalization of the employed
objectives in order to respect user’s preferences, as they are
expressed with the selected weights. Note that this requirement
is inline with weighted-sum optimization techniques found in
relevant literature [15], where authors identify the necessity
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for normalization of objective functions in order to achieve
adherence to the preferences of the designer.

B. Reinforcement Learning Algorithm

The proposed Reinforcement Learning algorithm consists
of a set of states, a set of actions, and a reward function.
In RL terminology, we call Agent the mechanism that learns
and acts. State is a vector that describes the scenario/situation
that the Agent encounters in the Environment. The Agent
performs an action that has an effect on the environment
and therefore changes the state. Every action gives a reward
from the environment to the agent; in this context, the agent’s
objective is to maximize its total reward during an episode
(i.e. until reaching a terminal state and start a new episode).
Finally, the feedback from a terminal state is zero, or even a
negative reward.

During algorithm’s execution, an action ai (we assume
that the action space is finite) is selected iteratively once per
instance leading from state si to a new state si+1. At this
notation, the tuple (si, ai, si+1) is called a transition and a
real reward value ri is assigned to each of them. The agent’s
objective is to find a series of transitions that maximize the
total return reward value (also called the return r′) in Equation
2. Finally, the γ ∈ [0, 1) is a discounting factor that controls
the importance of future rewards and ensures convergence of
the sum in Equation 2.

Maximize r′ =

n∑
i=0

γri (2)

Given a state s1 and an action a1, the action-value of
the pair (s1, a1) is defined by Equation 3, where r′ is a
random return associated with first taking action a1 in state
s1, thereafter. Consequently, the estimation of Q parameter
is of high-importance, as it quantifies the efficiency of CPS
orchestrator’s selections.

Q(s1, a1) = E[r′|(s1, a1)] (3)

C. Proposed framework

This section describes the proposed framework for address-
ing the model-free HVAC optimization challenge. In detail,
this framework performs the dynamic control of the HVAC
system in predefined intervals, called time-steps, by sampling
the state of the building and computing the next set-point,
i.e. a vector designating the values of all the configuration
parameters of the HVAC system.

In order to address the inherent unpredictability of the
unknown underline system, the proposed framework relies on
a Reinforcement Learning (RL) algorithm [16] to: (i) navigate
between available system’s states, and (ii) model and predict
cost function according to the already acquired (from the CPS
sensors) data. The studied RL algorithm models the target
system by means of a set of states, a set of actions and
a reward function. Since the reward maximization is equal

Fig. 1: Proposed framework for design and customization of
the targeted model-free HVAC orchestrator.

to the minimization of cost function (i.e. by considering the
reward presented in Equation 4), for the rest of our analysis
we will refer to c as the cost function. At this notation,
a real value ci is assigned per transition (per time-step).
Estimating the action-value function Q (based on Equation 3)
is of high-importance for evaluating the overall orchestrator’s
performance. Moreover, as the employed costs ci are unknown,
a function approximation (by means of data-driven supervised
learning) is applied.

ri = MAX COST − ci (4)

1) Pre-processing tasks: The functionality of these tasks
is to guarantee that the preceding decision-making logic can
dynamically respond to unexpected events. For this purpose,
the self-adaptive mechanism is invoked.

State retrieval: It retrieves the current buildings’ state once
per time-step. In order to guarantee effective Q-function
approximation (based on Equation 3), each state has to fulfill
the Markovian property, i.e. to contain all the necessary
information for estimating the Q function. Therefore, the state
is formed by the subset of acquired data that influence system’s
functionality. At this notation, a system’s state (Equation 5 )
is defined as a tuple of (Outdoor temperature (T out

i ), Solar
radiation (Ri), Indoor temperature (T in

i ), Indoor humidity
(Hi)), since they effectively capture the building’s dynamics
for both energy consumption and thermal comfort metrics.

si = [T out
i , Ri, T

in
i , Hi] (5)

Action Space: For each time-step, an action refers to the
assignment of a temperature set-point per thermal zone. Then,
the action space accrue by dividing the range of HVAC’s
set-point (temperature) into discrete segments. A step-by-
step search approach is applied for this purpose. Regarding
the studied problem formulation, the required action space
ai includes five candidate options with respect to the cur-
rent temperature, i.e. maintaining current temperature, in-
crease/decrease it by a step of ±0.5◦C or ±1.0◦C degrees
(Equation 6).
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αi ∈ {T in
i − 1, T in

i − 0.5, T in
i , T in

i + 0.5, T in
i + 1} (6)

Cost calculation: The cost function is formed by a weighted
sum of the HVAC objectives (energy cost and thermal com-
fort). Adopting the approach from [17], with respect to the
constraints that must be satisfied (Equation 1), an action is
deemed terminal (i.e., corresponds to a terminal cost of value
max cost) if it leads to prohibitive results regarding the
constraints (thermal comfort), or the constraints were already
unsatisfied and the action further increases the dissatisfaction
value. Our framework evaluates the efficiency of applied, or
candidate actions, through the cost function given at Equation
7. The weighting factor (tr ∈ [0, 1]) gives the relative impor-
tance between the two orthogonal metrics, namely the energy
cost and the occupants’ thermal comfort level.

c(si, αi) =

{
tr × Enorm(si, αi) + (1− tr)× PPDnorm(si, αi), PPD(si, αi) ≤ 15

max cost, else

(7)

Regarding the energy cost (E), if the expected energy loads
of the buildings at time-step i exceed the energy availability
from the photovoltaic panels (PVs), the excessive demand is
met by purchasing additional energy from the main-grid at
price. Otherwise, the energy requirements are met with micro-
grid’s renewable sources.

Given that the value of thermal comfort (PPD) cannot
exceed 151, the cost metric at Equation 7 is not terminal
whenever |PPD| ≤ 15. On the other hand, an action is deemed
terminal (i.e., corresponds to a terminal cost) if:

• the thermal comfort metric is out of acceptable range
(PPD > 15);

• the thermal comfort metric was already out of the accept-
able range and the action further increases its value.

2) Decision-making mechanism:: This subsection describes
the functionality of the introduced RL algorithm by taking
advantage of its acquired knowledge to increase the efficiency
of the predicted actions. In principle, this is a leap towards
self-adaptive orchestrators, as any unforeseen and manifested
condition will be considered at the supervised machine learn-
ing model.

Transition-cost fusion: The controller’s efficiency is based
on the history of all encountered states, taken actions, calcu-
lated costs and the preceding states as a result of these actions.
A batch of data in the form of concatenated tuples (si, ai, ci),
one per transition (si, ai, si+1), is created and stored to the
database to support the learning procedure.

Dynamic scaling: As stated at Section III-A, an accurate
scaling (normalization) of the objective functions must be
accomplished especially for the energy consumption, where
the range is unknown without prior information about the
buildings’ dynamics. Our framework lies to unsupervised

1This threshold is defined as the acceptable limit according to EN15251
European standard.

dynamic scaling [18], where running average and standard
deviation are calculated for all the objectives. As new data
acquired from building’s sensors, the scaling parameters are
re-calculated, ensuring that the scaling is up-to-date. Equation
8 formulates the normalization of function F , where µi and δi

denote the current (i-th time-step) mean value and the standard
deviation, respectively. Similarly, Equations 9 and 10 give the
iterative update of µi and δi values.

Fnorm =
F − µi

δi
(8)

µi = µi−1 +
F − µi−1

i
(9)

δi =

√
σi

i− 1
, σi = σi−1 + (F − µi−1)(F − µi) (10)

Data storage: Our framework considers that both transitions
and costs are stored in databases to enable model’s refinement
task.

Main controller: Given the current state and the available
actions, the orchestrator designates the configuration for the
next set-point, which minimizes the expected return (i.e. the
cumulative future costs in the time frame defined by γ in
Equation 2).

An Artificial Neural Network (ANN) is used for supporting
the task of machine learning. The training of this ANN is
performed with the database in the form of (si, αi) tuples. The
targets for this training are computed based on Equation 11,
where Qi denotes the output of the current ANN. Finally, the
term ci(si, αi) is a linearly scaled value of the actual cost as
a function of cost definition and dynamic scaling adjustment.

target = ci(si, αi) + γ ·minαi
Qi(si+1, αi) (11)

Fail-Safe controller: When terminal cost is exceeded, the
following two procedures take place: Initially, the fail-safe
controller is temporarily invoked to select the next set-
point and then the learning model is re-trained. The fail-
safe controller selects an action, which exhibits increased
probability to improve the overall solution in term of thermal
comfort constraints satisfaction. It merely rectifies the previous
“sub-optimum” action and based on previous observations it
computes a set-point that ensures thermal comfort constraint
satisfaction. More precisely, the actions of the fail-safe con-
troller increase or decrease the indoor temperature by 1◦C,
according to the residents estimated thermal comfort.
ϵ-greedy exploration: In order for the proposed framework

to solve optimally non-convex problems, an exploration mech-
anism for avoiding being trapped in a local minimum is
necessary. In this work, we propose an ϵ-greedy exploration
mechanism for avoiding this pitfall. The main controller op-
erates with possibility 1 − ϵ, where ϵ is self-regulated (Self-
Regulating Action Exploration (SRE)) [19]. The value of ϵ
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is calculated based on the orchestrator’s success rate and its
update is performed by Equation 12, where λ and k are the
success rate and learning rate, respectively.

ϵ′ = f(1− λ)
[
k(1− λ) + (1− k)ϵ

]
, where f(x) =

{
1 x > 0

0 x ≤ 0

(12)

The λ parameter is based on the orchestrator’s consecutive
positive outcomes, which are determined by the validity of
the learning model’s prediction. Inspired by [20] we propose
a definition of this validity that is associated by the Temporal
Difference (TD) error formulated by Equation 13. Specifically,
controller’s decision is deemed positive if |TD| ≤ TD limit,
where TD limit has to be small enough to represent an
accurate approximation and elastic enough to encourage early
stages of learning.

TD = ci(si, αi) + γ ·minαi
Q(si+1, αi)−Q(si, αi) (13)

Table I summarizes the parameters employed within the
proposed model-free orchestrator. At this table we also provide
the values of these parameters regarding the studied case study
(i.e. efficient configuration of HVAC system at agnostic build-
ings towards improving thermal comfort and energy savings
metrics).

3) Optimizing Model Procedure:: This task performs the
iterative model optimization. Specifically, it deals with the data
transfer from system’s database to RAM or GPU memory, the
ANN’s targets calculation according to Equation 11, as well
as the ANN retraining.

Train Learning Model: Two different approaches for ANN
retraining are considered. The first of them assumes that one
training epoch is performed once per time-step, whereas the
latter approach concerns a full ANN retrain in case a terminal-
cost is reported. Since an ANN retraining includes many
epochs, it exhibits increased computational complexity and
execution run-time overhead. During the initial time-steps,
ANN retrain is performed more frequently due to the limited
orchestrator’s “knowledge”; however, the reduced amount of
training data imposes negligible overhead for this task. On the
other hand, the retrains for an already trained RL algorithm are
limited; hence, the associated overhead (due to the increased
database size) is also limited.

IV. EXPERIMENTAL RESULTS

The problem we tackle throughout this manuscript deals
with the optimum configuration of HVAC systems in order
to maximize occupants’ thermal comfort with the minimum
possible energy cost. The target case study considers five
buildings with multiple thermal zones (summarized at Ta-
ble II), while the efficiency of the proposed orchestrator is
evaluated with the usage of well-established EnergyPlus suite
[21]. The buildings’ modeling was performed in detailed

Fig. 2: Evaluation of the orchestrator’s performance over time:
Episodes duration regarding the January–March experiment.

manner2 [22]. Regarding the employed weather and energy
pricing data, they correspond to publicly available information
for 2010 [23] [24]. Without loss of generality we consider that
both energy consumption and thermal comfort metrics are of
equal importance; thus, the selected weights at Equations 1 or
7 are equal to 0.5.

The targets of the proposed data-driven machine learning
method aim to derive temperature set-points that not only lead
to lower costs for the current time-step, but also optimize fu-
ture orchestrator’s decisions. For this purpose, careful selection
of the γ parameter (Equation 11) is necessary. Based on our
exploration, we conclude that the performance of proposed
orchestrator is retrieved for γ equals to 0.98. The estimation
of objective functions is performed via a Multiple Layers
Perceptron (MLP) ANN. The activation function for all the
nodes except those of the output layer is the hyperbolic tangent
sigmoid, whereas the output layer incorporates the logistic
sigmoid to produce values in the range [0, 1]. Similarly, the λ
parameter for the ϵ-greedy estimation component refers to the
number of successful actions of the controller. For the scopes
of this manuscript, according to the required characteristics
of the TD limit presented in Section III-C2, we consider an
action is valid if the MLP’s |TD| is less or equal to 0.15
(Equation 13). With regard to data manipulation for local
database storage, we selectively save the data that refer to the
last N days in order to reduce the incremental batch of data.
Such a technique has proven to be very efficient in use-cases
like the one examined on this paper [25].

A. Evaluate Orchestrator’s Efficiency

Initially, we quantify the efficiency of the proposed frame-
work in terms of episodes. An episode is a sequence of control
iterations, that ends if the current state fulfills a termination
condition (e.g. the system reached its goal state, or a failure
occurred) [26]. In the context of this case study, an episode
ends either when the orchestrator results to thermal comfort
values out of the acceptable limits, or the HVAC system is
turn off at the end of a day.

The results of this analysis are depicted in Figure 2. For
demonstration purposes, the horizontal axis plots the id of

2The modeling of the buildings was part of the PEBBLE FP7 project funded
by the European Commission under the grand agreement 248537.
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TABLE I: Summary of the studied problem and the proposed orchestrator’s definition.

State si = [T out
i , Ri, T

in
i , Hi]

Action Space αi ∈ {T in
i − 1, T in

i − 0.5, T in
i , T in

i + 0.5, T in
i + 1}

Objective Maximize
∑n

i=0 γri

Reward ri = MAX COST − ci, ci(si, αi) =

{
tr × Enorm(si, αi) + (1− tr)× PPDnorm(si, αi), PPD(si, αi) ≤ 15

max cost, else
Algorithm Neural Fitted Q Iteration (NFQ)

Exploration Strategy ϵ-greedy exploration
Exploration rate (ϵ) Based on model’s prediction (see Eq 12)

Discounting factor - γ 0.98

Learning Model

Type Multilayer Perceptron (MLP)
Activation Function tanh
#Layers 4
#Nodes 16

Validity Definition Based on Temporal Difference (TD)
Criterion for positive decision |TD| ≤ 0.15

TABLE II: Summary of building properties.

Building Surface Thermal Operating Warm-up Random
area zones hours phase occupancy

#1 350m2 8 6:00am–9:00pm No Yes
#2 525m2 10 8:00am–9:00pm Yes Yes
#3 420m2 10 8:00am–5:00pm Yes Yes
#4 280m2 6 7:00am–8:00pm Yes Yes
#5 228m2 4 6:00am–6:00pm No Yes

consecutive episodes for an operation period of three months
(January–March), while the vertical one gives the duration
(in term of operating time-steps) of each episode. Without
affecting the generality of our analysis we considered time-
steps of 20 minutes duration. Hence, the controller can be
involved up to 45 times per day (based on operating hours
depicted in Table II). At this figure, an episode with duration
45 indicates that the Main Controller component computes
successfully the temperature set-points for the entire day with-
out any failure. Based on our experimentation, the proposed
orchestrator achieves an average episode’s duration equals to
32 regarding the 3 months (90 days) experiment. In addition
to that, if we exclude the training phase during the first 20
episodes, then the corresponding average episode’s duration
is 37. This figure highlights also that the performance of
introduced orchestrator is improved over time, since there is no
failure for the last 22 consecutive days. In order to study more
thoroughly this efficiency, we also plot at Figure 2 with red
color line the outdoor temperature. This analysis indicates that
the proposed orchestrator exhibit increased episodes’ duration
until an unexpected change in weather conditions that has
never been encountered before (i.e. at episode 40 the outdoors
temperature remains under 15°C for the whole day). Similar
behavior is reported until the proposed model-free orchestrator
to be robust to weather changes (last 22 days).

Apart from episodes’ duration, Table III quantifies the effi-
ciency of the proposed orchestrator in terms of improving the
overall energy consumption, the average thermal comfort and
the total weighted cost. As reference for this comparison are
the Ruled Based Configurations (RBCs) ranging from 20◦C
up to 27◦C, the well-established Fmincon solver [27], as well

TABLE III: Evaluation of yearly results against other methods.

Method Energy (kWh) Avg. PPD (%) Cost (Equation 1)
RBC 20◦C 66,967 24.99 0.89
RBC 21◦C 62,939 17.46 0.72
RBC 22◦C 61,223 11.66 0.59
RBC 23◦C 61,955 7.94 0.52
RBC 24◦C 65,191 6.46 0.51
RBC 25◦C 70,467 7.23 0.56
RBC 26◦C 77,359 10.22 0.66
RBC 27◦C 85,680 15.31 0.81
Fmincon [27] 34,936 6.17 0.33
ESL [25] 36,767 6.54 0.35
Knapsack [28] 36,399 6.47 0.34
Proposed 34,601 7.71 0.36

as the former versions of our decision-making algorithms (the
ESL [25] based on support vector machines and the Knapsack
optimization algorithm coupled with regression models [28]).

According to this analysis, the proposed orchestrator
achieves superior performance against to RBCs, as it achieves
overall cost reduction ranging from 41% up to 147%. More-
over, the introduced solution exhibits comparable efficiency
against to relevant implementations (e.g. Fmincon, ESL, Knap-
sack) but without prior knowledge to the employed cost
functions and detailed modeling of the target buildings.

In order to study in more detail the efficiency of proposed
framework, Figure 3(a) plots the temperature set-points as
they are computed with three existing solvers (Interior-Point,
SQP and Active-Set) regarding a representative winter day.
These methods compute iteratively candidate solutions to solve
the problem, where all of them consider an accurate form
of the objective functions. On the other hand, the proposed
orchestrator does not rely on such an iterative approach (it
is executed only once), without considering any information
about the employed objective functions. This is also depicted
at Figure 3(b), which plots the variation of total cost per
iteration for the alternative controllers regarding the same
winder day. At this figure, the red dotted line corresponds
to the cost of the proposed method.

The efficiency of proposed orchestrator to compute near to
optimal results is also quantified at Figure 4, which plots the
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(a) Thermostat Set-points (b) Total Cost

Fig. 3: Performance evaluation against standard multi-
objective solvers with detailed micro-grid modeling

Pareto results for a representative winder day. The vertical and
horizontal axes at this analysis refer to the thermal comfort
metric (% PPD) and the buildings’ energy consumption,
respectively. At this figure three different type of solutions
are depicted: (i) the RBC temperature set-points (blue color),
(ii) the proposed model-free optimizer (red color) and (iii)
the reference Fmincon MPC solver. Each of these methods
was invoked with different setups during this analysis. More
specifically:

• the RBC selections are in the range 19–25◦C with step
equals to 0.2◦C (30 solutions);

• the relative importance between energy consumption and
thermal comfort for the Fmincon solver range from 0 –
1 with step 0.1 (20 solutions);

• the trade-off at the proposed solver ranges between 0 and
1 with step equals to 0.05 (20 solutions).

According to the analysis summarized at this figure, We
claim that the proposed method converges to results close
to the Pareto front for the majority of executions, which
in turn leads to considering the building’s thermodynamic
behavior and providing close to optimal solutions. Regarding
the solutions that deviate from the optimal ones, this occurs
due to the random selections during the exploration phase.
Finally, we have to state that the solutions retrieved with
Fmincon solver (the performance of this solver was already
discussed at Figure 3) refer to 10 different trade-off (tr) values.

Fig. 4: Pareto analysis results for a representative winter day

The mean TD error based on Equation 13 for the first 90
days is plotted in Figure 5. These results confirm previous

Fig. 5: Evaluation of the Machine Learning model: Daily mean
MLP TD-error

(a) Energy consumption (b) Thermal Comfort

Fig. 6: Efficiency of dynamic scaling - the impact of different
trade-off values

evidence about improving the controller’s efficiency over time,
as the machine learning part of the introduced orchestrator
leads to lower error values. More specifically, the majority of
these values is less than 0.15 (average error value is 0.07),
which has been defined as the threshold value for considering
the model as successful.

As discussed in Section III, the optimization objective is
formulated as a weighted sum, which enables to define the
relative importance of energy consumption and occupants’
thermal comfort metric. However, in order to fully support
this relative importance, our framework incorporates also a
dynamic scaling kernel. At the experiment illustrated in Figure
6 we study this feature for alternative weight factors, referred
to as trade-off weights. In detail, tr = 0.1 corresponds to the
maximum occupant’s thermal comfort, while tr = 0.9 leads to
the maximal energy savings without exceeding the threshold of
15% for the thermal comfort threshold. Based on these results,
we observe that our system respects the designer intention
by adapting the importance of each objective according to tr
values.

B. Evaluate Orchestrator’s Run-Time Overhead

The task of model optimization is performance dominant.
Hence, the execution time of this component is the crucial
one that defines the overall orchestrator’s performance. In
order to study the proposed framework’s run-time overhead,
it was implemented onto a low-cost embedded system. The
target platform for this analysis is a 4-core ARM Cortex A57
operating at 1,900 MHz with 4 GB of system memory. Figure
7 plots the execution latency for representative input data sets
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Fig. 7: Run-time for model optimization (data transfers, build-
ing targets, 1 epoch re-training) on ARM Cortex A57.

and number of neurons per ANN. The ANN architecture for
this experiment consists of 2 up to 18 layers. Each of the
solution has an average of 5 input features that correspond to
environmental variables acquired from building’s sensors.

The functionality of the proposed orchestrator discussed
throughout this manuscript incorporates an MLP with 4 input
nodes (corresponding to the 4 features of the state), 2 hidden
layers with 16 nodes and a data window size less than
3,000 points. Based on our experimentation, the average delay
per time-step for this orchestrator is 0.03 seconds, which is
enough for the decision-making task imposed by a typical
HVAC configuration scenario (i.e. 20 minutes time frame).
More specifically, as it was already depicted at Figure 2,
there were only 55 re-trainings for the first 3 months of
operation. Consequently, the time delay is acceptable, since the
training phase can be executed in parallel with the continuous
operation. Even for the border case, where a full retraining
is necessary, then the employed model causes an overhead of
less than 1 second for the ARM Cortex A57.

V. CONCLUSIONS

A framework that supports the design of a low-cost CPS
orchestrator targeting HVAC systems, was introduced. This
orchestratos was applied in order to optimize a multi-objective
problem related to the simultaneous enhancement of buildings’
energy consumption and the occupant’s thermal comfort met-
ric. Based on our experimentation, we validate the superiority
of proposed solution against state-of-the-art relevant solvers
without the necessity of accurate prior system modeling, as
both functions that describe energy consumption and thermal
comfort are agnostic. Also, the introduced solution exhibits
significant lower computational/storage complexities, which in
turn enables its execution onto low-cost embedded devices.
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