
An algorithm for node clustering targeting swarm of
cyberphysical systems

Christos Sad and Kostas Siozios
Department of Physics, Aristotle University of Thessaloniki

Thessaloniki, Greece

Abstract—The increased number of nodes found in next-
generation systems, such as the swarm of CyberPhysical nodes,
impose new challenges related to their organization. Throughout
this paper a novel algorithm aiming to address this problem, is
introduced. The proposed solution relies on a public-available
genetic algorithm. Experimental results highlight the superiority
of introduced solution, as it achieves superior performance as
compared to well-established relevant algorithms.

Index Terms—Partitioning, Clustering, Graph, Meta-heuristic,
Genetic algorithm

I. INTRODUCTION

Recently, the convergence of emerging embedded comput-
ing, information technology, and distributed control became
a key enabler for future technologies. Among others, a new
generation of systems with integrated computational and phys-
ical capabilities that can interact with humans through many
new modalities have been introduced. Such systems that bridge
the cyber world of computing and communications with the
physical world are referred to as Cyber-Physical Systems
(CPS) [1]. Specifically, a CPS is a collection of task-oriented
or dedicated systems that pool their resources and capabilities
together to create a new, more complex system which offers
more functionality and performance than simply the sum of
the constituent sub-systems. Among others, these new design
paradigms have the ability to interact with, and expand the
capabilities of, the physical world through monitoring, com-
putation, communication, coordination, and decision making
mechanisms.

The integration of physical processes and computing is
not new. Embedded systems have been in place for a long
time and these systems often combine physical processes (e.g.
through digital/analog sensors) with computing. However, the
core differentiator between a CPS and either a typical control
system, or an embedded system, is the communication feature
among system’s components, which adds (re-)configurability
and scalability, allowing instrumenting the physical world with
pervasive networks of sensor-rich embedded computation.

The large amount of these devices impose among others
challenges related to their proper organization in order to
guarantee optimal operation. Critical challenge towards this
direction is given to novel algorithms that perform node
clustering [2]. Throughout this paper we emphasize on CPS
that consists of swarm of nodes that have to be appropriately
clustered to multiple groups in order to perform different
activities. This problem can be formulated as follows:

Problem formulation: Given a graph G(V,E), where V
and E denote the set of swarm nodes and their connectivity,
respectively, the k-way clustering refers to the partition k
disjoint subsets of the V (V1, V2, . . . , Vk), such as ∪iVi = V
by taking into consideration a balancing constrain [2].

Typically, the problem of cluster of swarm nodes has a lot of
similarities with the balanced -– minimum cut size partitioning
discussed throughout this paper. In this case, the emphasis is
on computing k disjoint subsets of V , such us the sum of the
node’s weights (W (V)) between the subsets to be (almost)
the same, and the sum of the edge’s weights, which connect
nodes from different parts (edge-cut) to be minimized.

Graph partitioning is an NP-hard problem and a lot of
algorithms have been proposed. For instance, Kernighan–Lin
(KL) and Fiduccia–Mattheyses (FM) algorithms for circuit
partitioning [3] [4]. KL was first introduced for graphs with
even number of nodes and only for bisection (2-way parti-
tioning). After a lot of modifications, the algorithm was able
to work for odd number of nodes and different partitioning
ways(3-way and more),but the big asymptotic run time which
is O(n3) (and after some improvements O(n2logn)), is its
big limitation. FM algorithm is similar with KL but much
faster. For FM the run time is O(m), with m being the
number of interconnections. The limitation of the FM is that
if the graph(circuit) is very big, with a lot of interconnections
the run time would also be very big. Simulated annealing
(SA) algorithms were also applied to graph partitioning [5].
However, since these algorithms include multiple parameters,
their efficient fine-tuning is a challenging task. Finally, multi-
level partitioning algorithms are also applied. A well-known
multilevel partitioning algorithm is hMetis [6] [7]. As it
is depicted at experimental results section, although hMetis
exhibits superior performance (in terms of min-cut), it cannot
tackle efficiently the node balance metric among partitions.

Throughout this paper we propose an algorithm for node
clustering targeting swarm of CPS. The proposed solution
relies on a genetic algorithm in order to perform efficient
design-space exploration. The proposed solution is open-
source and publicly available to the GitHub for further research
and experimentation. For evaluation purposes, the proposed
algorithm was applied to cluster swarm of nodes ranging
between 100 and 1000.

The rest of the paper is organized as follows. Section II
describes the proposed framework for node clustering based
on genetic algorithm. Experimental results that highlight the

2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)

978-1-6654-6717-9/22/$31.00 © 2022 IEEE

20
22

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
od

er
n

C
irc

ui
ts

 a
nd

 S
ys

te
m

s T
ec

hn
ol

og
ie

s (
M

O
C

A
ST

) |
 9

78
-1

-6
65

4-
67

17
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
O

C
A

ST
54

81
4.

20
22

.9
83

75
79

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 19,2024 at 08:03:08 UTC from IEEE Xplore. Restrictions apply.

efficiency of proposed solution are provided at Section III.
Finally, Section IV concludes the paper.

II. PROPOSED GENETIC ALGORITHM

Genetic algorithms(GAs) were first introduced by John
Holland and his associates in the 1975. They are classified in
the category of meta-heuristic algorithms and are mainly used
for optimization problems. There are three main parts of a
genetic algorithm, which are namely, “selection”,” crossover”
and “mutation”. Based on the adaption operation, they start
from random solutions and mixing them in a random manner,
new generations are created. Every new generation is more
likely to be better in the sense of a fitness function, which
controls the whole operation [8]. One of the main advantages,
of a genetic algorithm, is the ability to run in parallel. Also,
another important point is the use of random choice operators
for the search space exploration and so also the less possibility
to trap in a local minimum.

A. Algorithm Description

The algorithm developed in this paper, is a GA, following
the basic characteristics of these algorithms and using the
main parts of them (selection, crossover, mutation). Also, a
parallelism method is adopted, offering speedup and so the
ability to solve more complex problems.

The procedure which is used is the following. First of all,
a random population of solutions is created to construct the
first generation. Then, follows the loop-core of the GA, where
if none of the finish criterium is verified, new generation
is created (the new generation creation procedure will be
described next). Then, based on the fitness function, the best
chromosome of the current generation is computed, also the
percentage of improvement for the fitness function of the last
generation’s best chromosome and the current generation’s
best chromosome is computed and finally the overall best
chromosome of all the generations (until now) is computed.
After exiting the loop-core, the overall best chromosome is
returned as the final solution of the problem. The pseudocode
of the GA can be seen in Algorithm 1.

Algorithm 1 Genetic Algorithm

1: create first chromosome population
2: create Gene-0 with the first population
3: while finishcrit ̸= 1 do
4: create new gene
5: find best chromo of current gene
6: find percentage of improvment
7: find current best chromo
8: end while
9: return current best chromo

The next generation creation procedure which is used is
the following. First of all, the chromosomes which will be
used as parents, are selected. For this process, a couple of
chromosomes is randomly selected and then from these, the
one with the worst fitness function is stored in the parents’

array. If, for example, the number of mixtures that will take
place is set to k, a total number of 2×k parents is needed,
so this process is repeated 2×k. Selecting the worst, from
the two candidate parents, gives the opportunity to the better
one, to survive, as it is to the next generation. After having
finished with the selection process, the parents’ array gets a
random shuffle. The couples from the parents’ array, then are
selected successively, based to their random position in the
array. After this, a crossover procedure is getting done between
each couple from the parents’ array. In this process, the one-
point crossover operation takes places, for each couple, with
a probability th (for the experimentes 65%) or the couple
survives as it, with probability 1−th(35%). The whole process
can be seen in Algorithm 2.

Algorithm 2 New generation’s creation with k mixtures

1: # k:const number of mixtures
2: for i = 1, . . . , 2k do
3: candidate 1=random(chromos)
4: candidate 2=random(chromos)
5: if costfunction(candidate 1) > costfunction(candidate 2)

then
parentsarray(i) = candidate1

6: else
parentsarray(i) = candidate2

7: end if
8: end for
9: random shuffle (parentsarray)

10: for i = 1, . . . , 2× k , step=2 do
11: a = random(0, 1)
12: if a < threshold then
13: point = (int)random(0, nodes) #crossover point
14: one-point-crossover-operation

{parentsarray(i),parentsarray(i+1),point}
15: end if
16: end for
17: return parentsarray

The one-point crossover is the procedure of mixing the two
parents-chromosomes. First of all, a random number from 1
to maximum length of chromosome is created, which declares
the point of the chromosome, based on which, the process
will take place. After this, every point of the parent1 until the
crossover-point migrates to parent2 and the opposite. Then,
the two offsprings are created.

In the previous two algorithms, the chromo (chromosome) is
the class that presents a solution of the problem. One variable
of this class is an array that contains the part in which belongs
every node of the hypergraph. Also, Gene is another class that
contains a population of chromos (solutions).

Finally, it has to be mentioned that every chromosome can
be selected to participate in the selection tournament more than
once, so it can be noticed in more than one couples. In this
way the diversity of the species is ensured and so a trap to a
local optimum solution is avoided. The above, ability is used,
instead of ”mutation” procedure, where a little percentage of

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 19,2024 at 08:03:08 UTC from IEEE Xplore. Restrictions apply.

the population, is selected to slightly change, to avoid a local
optimum solution.

B. Termination Conditions

The finish criteria, are based on the fitness function or the
number of generations and describe situations that terminate
the GA’s execution. More specifically the following criteria
are used at the proposed GA:

• maximum number of generations that will be created. It
is a predefined constant and in case that none of the other
criteria is verified, it is activated to avoid getting stuck in
an infinite loop.

• threshold for the fitness function, if the fitness function
of the overall best chromosome is better or equal to the
threshold the algorithm terminates.

• number of generations that passed without remarkable
improvement between best chromos of successive genes.
If the number of genes is more than a predefined maxi-
mum value and the improvement, every time, very poor
the GA terminates.

• number of generations that passed from the generation
that the overall best chromosome (until now) was created.
If no actual optimization is achieved for a number of
generations the algorithm finishes its execution returning
as output the over all best solution until then.

All the above criteria were used in the experiments for the GA
termination.

This criterion create some predefined constant parameters.
Selecting the values of this parameters, regulates the approxi-
mation between time of execution, quality of the solution and
resources. For example more strict criterion about the quality
of the solution may lead to bigger run-times or more necessity
of resources(e.g. memory, cpu cores).

C. Parallelism

The parallelism strategy which is adopted in this paper
is the Single population master-slave GA. In this model, a
unique population of chromosomes exists in the master-main
thread. The processing of the chromosomes is implemented
at the slaves-workers threads in a parallel way. Specifically,
the processes that are paralleled are the following.Firstly, for
any chromosome the computation of its fitness function is
being paralleled. The fitness function must be a simple metric,
ease to compute and its time of computation depends on the
length of the chromosome. So a parallelism on its computation
process will speed up the GA. Then, the selection procedure
inside the generation is also paralleled. The chromosome cou-
ples with the candidate parents are treated in parallel and not
serial. This is able because the selection tournament contains
only computations of fitness functions. Finally, the one-point
crossover procedure is paralleled, so that the crossover of every
couple is processed in parallel way.

III. EXPERIMENTAL RESULTS

In this section the experiments in which the genetic al-
gorithm (GA) was tested and evaluated are described. We

tested the GA on partitioning some graphs that correspond
to different organizations of swarm nodes. The reference
solution for this analysis were computed based on the hMetis
partitioning algorithm. For demonstration purposes, graphs
of swarm nodes were randomly created(random nodes’ and
edges’ weights). The number of nodes that are included to
these graphs span from 100 up to 1,000 nodes. Four different
scenarios were considered for these experiments, which refer
to the connectivity demand among nodes. For this purpose,
we explore cases with connectivity among nodes that range
between 25% and 100% (fully connected graph). In addition to
that, we also explore the efficiency of proposed GA algorithm
to calculate the 2-way, 3-way, . . ., 10-way partitioning. For
sake of completeness, the results reported at this section were
retrieved as an average value from 10 runs of the proposed and
hMetis algorithms. For demonstration purposes, all the results
are plotted in normalized manner over the reference solution
(hMetis).

Next, we describe in detail the metrics employed for the
evaluation procedure. First of all, the solutions were evaluated
based on the balance metric. For this propose we used the
imbalance metric formulated as follows:

imbalance =
∑

|W (Vi)−
W (V)

k
|,∀i = 1, ..., k

W (Vi) : sum− of − nodes′ − weights− from− part− i

W (V) : sum− of − all − nodes′ − weights

k : number − of − parts
(1)

Next, we consider the edge-cut metric for the computed
solutions (partitions), based on the following equation:

edgecut =
∑

W (ei,j)× (1− part(i) == part(j)),

∀i, j = 1, . . . , nodes, i ̸= j
(2)

In the previous equation part(i) == part(j) equals to 1,
if part(i) = part(j) and 0, if part(i) ̸= part(j). Edge-
cut describes the sum of edges’ weights, connecting nodes
of different parts.

Regarding the previously mentioned metrics, both of them
were considered at the fitness function as a weighted sum.
Namely, next equation depicts the employed fitness function:

fitnessfunction = a× imbalance+(1−a)×edgecut (3)

The value of parameter a affects the result of the GA, as
it controls the importance of balanced and minimum edgecut,
respectively. Values, near 1 focus on the imbalance metric and
values near 0, give importance to the minimum edgecut target.
For the experiments, the parameter was set at 0.6.

Figure 1 depicts the imbalance metric among partitions
for the studied hypergraphs. Different curves at this figure
correspond to different way of partitioning ranging from 2-
way up to 10-way). Vertical axis at this figure gives the
ratio imbalanceGA

imbalancehMetis
. According to this analysis, the ratio

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 19,2024 at 08:03:08 UTC from IEEE Xplore. Restrictions apply.

gradually decreases. This imposes that as the number of the
nodes increases, the GA retrieves more balanced solutions than
the corresponding hMetis partitions. Also, regarding solutions
with less than 6 partitions, the GA always creates more
balanced solutions (since the imbalance ratio criterion is less
than 1). Moreover, in case we have to partition more than 250–
300 nodes, then the proposed GA algorithm results to more
balanced solutions. Note that in case we compute 2-way or 3-
way partitions, the curves at this figure is almost flat (and near
to 0), which means that the GA creates much more balanced
solutions than the hMetis. In the worst case GA was 3.9×
more imbalance than the hmetis and in the best case the ratio
(GA/Metis) was 0.0082.

Figure 2 gives the ratio edgecutGA

edgecuthMetis
for the studied par-

titions. According to the experimentation, the GA’s solutions
are similar to the hMetis solutions in the sense of edge-cut. In
worst case the edge-cut ratio (GA/hMetis) is 1.12 and in the
best case is 0.83.

Taking into account both imbalance and edge-cut, GA’s
solutions are in most cases, more balanced and have a little
bigger edge-cut. The approximation between minimum edge-
cut and balanced partitioning is better in the case of GA.
This, can be noticed if we multiply the imbalance and edge-
cut ratio metrics. The edge-cut ratio is near 1 and so the
multiplications are almost near imbalance ratio’s values and
the graphic follows the same pattern as imbalance’s. This
means that the multiplications are most time less than 1, with
the worst case being 3.3 and the best one 0.0088.

We have to mention here, that about the run time of the
algorithms, hMetis always finished the execution very quickly,
in contrast with the GA, whose time increased as the number
of nodes increased. For example in worst case the hMetis was
35.76× faster than the GA and in the best case hMetis was
1.1× faster than the GA. Mentioning that, the worst cases refer
to small graphs, where hmetis’ run time was less than 1sec
it is clear that run time of GA was comparable with the very
fast hMetis and never exploded.

Fig. 1: Imbalance metric for the fully connected hypergraph

Fig. 2: Edge-cut metric for the fully connected hypergraph

IV. CONCLUSIONS

A novel framework based on genetic algorithm in order
to solve the clustering of swarm nodes into balanced groups
of nodes, was introduced. Experimental results highlight the
superiority of introduced solution, as it achieves superior per-
formance as compared to well-established hMetis algorithm.
Finally, the proposed open-source solution is publicly available
at Github for further experimentation from interested readers.

ACKNOWLEDGMENT

This research has been co-financed by the European Re-
gional Development Fund of the European Union and Greek
national funds through the Operational Program Competitive-
ness, Entrepreneurship and Innovation, under the call RE-
SEARCH – CREATE – INNOVATE (project code: T2EDK-
01681).

REFERENCES

[1] C. Lu et al., ”Real-Time Wireless Sensor-Actuator Networks for Indus-
trial Cyber-Physical Systems,” in Proceedings of the IEEE, vol. 104, no.
5, pp. 1013-1024, May 2016.

[2] V. Pal, G. Singh and R. P. Yadav, ”Balanced Cluster Size Solution
to Extend Lifetime of Wireless Sensor Networks,” in IEEE Inter-
net of Things Journal, vol. 2, no. 5, pp. 399-401, Oct. 2015, doi:
10.1109/JIOT.2015.2408115.

[3] B. W. Kernighan, S. Lin, “An efficient heuristic procedure for partition-
ing graphs,” in The Bell System Technical Journal , Volume: 49, Issue:
2, pp. 291 - 307, Feb. 1970.

[4] C. M. Fiduccia, R. M. Mattheyses “A linear-time heuristic for improving
network partitions,”DAC ’82: Proceedings of the 19th Design Automa-
tion Conference , pp. 175–181 , 1982

[5] G. M. Slota, C. Root, K. Devine, K. Madduri and S. Rajamanickam,
”Scalable, Multi-Constraint, Complex-Objective Graph Partitioning,” in
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 12,
pp. 2789-2801, 1 Dec. 2020, doi: 10.1109/TPDS.2020.3002150.

[6] Selvakkumaran, N. and Karypis, G, “Multi-objective hypergraph par-
titioning algorithms for cut and maximum subdomain degree mini-
mization,” ICCAD-2003. International Conference on Computer Aided
Design (IEEE Cat. No.03CH37486),pp.726–733.

[7] Cristinei Ababel, Navaratnosothie Selvakkumaran, Kia Bazargan, and
George Karypis,”Multi-objective Circuit Partitioning for Cutsize and
Path-based Delay Minimization” , IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pp. 181 - 185, 2002

[8] K. Maragos, K. Siozios and D. Soudris, ”An Evolutionary Algo-
rithm for Netlist Partitioning Targeting 3-D FPGAs,” in IEEE Em-
bedded Systems Letters, vol. 7, no. 4, pp. 117-120, Dec. 2015, doi:
10.1109/LES.2015.2482902.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 19,2024 at 08:03:08 UTC from IEEE Xplore. Restrictions apply.

