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Abstract—Machine learning (ML) algorithms are utilized
for the implementation of a ML python-based model of
dynamic behavior of Power DC – DC converters, for
energy harvesting applications. This subfield of artificial
intelligence, defined as the capability of a machine to
imitate intelligent human behavior, is used to perform
complex tasks in a way that is similar to how a designer
is implementing nonlinear switching circuits, like a power
DC-DC converter. The dynamic behavior of this non-
linear vehicle is simulated with ML, and in particular all
the related dynamic characteristics, obtained with large
signal time domain simulation, such as dynamic voltage
drop – electro migration and time domain operation, are
now captured rapidly with a ML approach. The related
results are benchmarked versus transistor level simulations,
depicting superior accuracy in minimum simulation time.

Index Terms—machine learning, DC – DC converter,
nonlinear circuits, switching circuits, large signal simula-
tion

I. INTRODUCTION

DC – DC power converter topologies are widely used
in various industrial fields such as uninterruptible power
supply (UPS), electric or hybrid vehicles, medium-
voltage DC (MVDC) and high-voltage DC (HVDC)
power systems [1]. Buck, boost, or buck-boost schemes
are utilized in order to provide regulated power supply
to the converter’s output, independent of input energy
and load variations. With the emergence of the energy
harvesting concept, DC – DC conversion schemes are
utilized, in order to provide matching between the ambi-
ent source and the load impedance [2]. Typically, boost
DC – DC converter configurations are selected, as they
offer a stepped-up output voltage, suitable for the supply
of off-the-shelf components (i.e., microcontroller units,
sensor modules, transmitter/receivers) [3]–[5].

As the technology progresses and the applications
become more demanding, the design effort is focused
on silicon integrated small-sized, low cost and energy
efficient power conversion solutions [6]. However, the
on-chip integration of switching circuits experiences
significant design challenges. To enable high operation
performance, many simulation sets must be executed, in

order to determine the ideal components’ characteristics
of the DC – DC converter (i.e., power switches sizing,
inductor and capacitor values, switching frequency).
However, the DC – DC converter, which acts as a
strongly nonlinear circuit due to the power switches,
imposes severe restrictions regarding the simulations of
time domain signals [7]. The main issue is the long
simulation times due to large netlist sizes, as well as
the high number of iterations needed for the design
optimization. In many cases, the time-domain analysis is
prematurely terminated, as the required simulation time
step is ultra-small, and the total simulation time is not
practical [8]. This phenomenon can lead to degraded
final performance, lower power conversion efficiency and
incomplete power integrity analysis, which affect the
reliability of the final system.

To this end, various works have been proposed, aiming
for accurate modeling of the DC – DC converter dynamic
behavior and related characteristics, such as dynamic
voltage drop – electro migration and time large signal -
time domain analysis. These methods, mainly focused on
the modeling of the power switches, are based on equiv-
alent spice circuits or additional tools and custom co-
simulation approaches (i.e., TCAD, MATLAB/Simulink)
which increase the complexity of the design flow and do
not contribute to the minimization of the simulation time
needed [9]–[12].

Data-driven modeling for power electronics applica-
tions is an attractive solution. Machine learning based
algorithms present the advantages of black box ap-
proaches (network theory analysis) combined with low-
complexity low-cost software implementation, enabling
design cycle speedup with high-accuracy results [7],
[13]. Machine learning enables modeling of the DC –
DC converter transient state characteristics by simply
analyzing the given input and output data. Furthermore,
the training process, which is the time-consuming part
of the ML method, is executed only once. Thus, design
cycle speedup is achieved.

In this work, a ML python-based model of dynamic
behavior of power DC – DC converters is proposed,978-1-6654-9005-4/22/31.002022IEEE
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aiming to minimize simulation iterations, accurate sim-
ulation results and design cycle speedup. The behavior
of this non-linear vehicle is simulated with ML, and in
particular all the related dynamic characteristics obtained
with large signal time domain simulation are captured
rapidly with a ML approach. The related results are
benchmarked versus transistor level simulations, depict-
ing superior accuracy in minimum simulation time.

The rest of the paper is summarized as follows:
Section II introduces the architecture of the employed
dataset that is used as a baseline for evaluating the pro-
posed solution. Section III describes the proposed simu-
lation framework and highlight the customization phase
of the employed machine learning solution. Benchmark
results that evaluate the efficiency of the proposed
solution as compared to the ground-truth simulation
data (retrieved from commercial simulation tools) are
summarized at Section IV. Finally, Section V concludes
the paper.

II. MACHINE LEARNING ALGORITHM INPUT DATA
SELECTION

Fig. 1 depicts the schematic of the DC – DC syn-
chronous boost converter topology. The circuit consists
of an inductor (L), a low-side (S2) and a high-side (S1)
power switch and the input/output capacitors (Cin, Cout).
The captured energy is stored in the inductor component,
and it is released to the output capacitor, providing a
stepped-up voltage [14].

Fig. 1. Boost DC -DC converter schematic

The power MOSFETs of the DC – DC converter,
experience voltage overshoots due to significant ringing
on the switch node (Vx), where the two MOSFETs
and inductor are tied together. If the amplitude of the
ringing exceeds the absolute maximum voltage ratings
of the CMOS process, it can be destructive to the
chip. Furthermore, phenomena such as electromagnetic
interference (EMI) can affect the performance of other
circuits within close range [15].

To this end, the transient voltage signal at the switch
node Vx is selected as the main performance metric for
the proposed large signal simulation methodology. The
DC - DC boost converter is simulated in XFAB CMOS

(a) Vx switch node transient signals for various inductance values

(b) Vx switch node transient signals for various Number of Fingers.
Fig. 2. Vx switch node time domain signal versus multiple values of

inductance L and Number of Fingers NF

0.18 µm Process Design Kit. To provide realistic results,
the simulation testbench includes the bond wires’ par-
asitic inductances, represented with 2nH/mm inductors.
The Vx transient signals are captured for a 300 µsec time
window with 200 psec time step, depicting S1 switch
turn ON. Two datasets, with two different variables are
provided as input data to the machine learning algorithm.
The first set provides transient signals for varying induc-
tances (L) from 40 uH to 1 mH (Fig. 2a). The second
dataset provides transient signals for varying MOSFETs
size, with single finger ratio 100 µm/ 0.5 µm (Fig. 2b).
The number of fingers multiplicity factor (NF) is swept
from 1 to 1000. The datasets are extracted in .csv format
files in order to be compatible with the ML algorithm
input specifications. Each dataset simulation (generation)
time is around 25 hours. One ML model was trained
for each waveform in the time-domain data and one
model for the highest peak values as well as second, third
highest etc, for the different values of L and NF. These
specific variables are selected in order to validate the
ML method accuracy. Depending on the design though,
the analysis can be adjusted for the extra DC – DC
converter parameters, such as switching frequency, dead-
time duration, input and/or output capacitance values.
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III. EMPLOYED NEURAL NETWORK MODELING
METHODOLOGY

A. Architecture Description

The Neural Network (NN) takes one input and pro-
duces one output and It consists of two hidden layers
of length 1024 as shown on Fig. 3. The dataset consists
of waveforms, therefore the activation function of the
first hidden layer is Tanh [16], [17]. Tanh is a non-linear
sigmoid function with values ranging from −1 to 1. This
means that big negative values are going to produce an
output close to −1, and values close to 0 are going to
produce values close to 0. The NN performs well with
just the first hidden layer but adding a second one with
a ReLU activation function increases the performance
a lot. ReLU is a function which returns 0 for negative
values and the same value for positive values. Finally, the
NN uses the Adam optimizer which is fast and works
well with most activation functions [18].

Fig. 3. Architecture of Neural Network.

B. Customization and Metrics

The dataset is split into training set and test set. The
first is used to train the model while the other is used
for validation. During the training process, the NN model
calculates the loss on the test set from the forward pass
and then backpropagates using the optimizer to tweak
the weights and biases of all the neurons. Hence the
performance of the model increases when this repetitive
process increases. Each iteration is called an Epoch and
more Epochs results in more training time. The loss is
calculated using the Mean Squared Error loss function.
The optimization during backpropagation is done with
Adam optimizer. After the training process, the model’s
performance is evaluated using the Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE) and the
Mean Absolute Percentage Error (MAPE) (1).

MAE =
1

Ntest

Ntest∑
n=1

|dn − yo,n|

RMSE =

√√√√ 1

Ntest

Ntest∑
n=1

(dn − yo,n)2

MAPE =
1

Ntest

Ntest∑
n=1

|dn − yo,n
dn

| × 100%

(1)

where Ntest is the total number of testing patterns, dn
is the n-th sample value from the test dataset and yo,n
is the n-th prediction output.

IV. MACHINE LEARNING MODELING
BENCHMARKING

Fig 4a shows the voltage output in the time domain
from SPECTRE virtuoso based simulation, for different
values of inductance 40 µH and 0.96 mH , which are
the edges of the L value in the design space. The red
line is the model’s prediction. Similarly Fig. 4b shows
the voltage output peak value of the first and fifth highest
peaks, with respect to the different values of inductance.

(a) Vx switch node time domain voltage and model prediction for
inductance values of 40 µH and 0.96 mH

(b) Vx switch node peak value of the first and fifth highest peaks,
with respect to different values of inductance.

Fig. 4. Converter ML Model vs Standard simulation
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(a) Vx switch node time domain voltage and model prediction for 1 and
354 fingers

(b) Vx switch node peak value of the first and fifth highest peaks, with
respect to different number of fingers.

Fig. 5. Converter ML Model vs Standard simulation

Extra plots were generated with the ML based mod-
eling approach for different numbers of fingers in the
Converter MOSFETs. This analysis was performed to
examine the ML model accuracy in terms of the MOS-
FETs sizing . In Fig. 5 the ML model is benchmarked
versus standard SPECTRE based simulations. The accu-
racy is superior since the model accurately captures the
referenced waveforms as well as the exact peak values.

Table I displays the results from the waveforms and
peaks training for different values of inductance L and
number of fingers NF. The Training Time (TT) of the
model is heavily dependent on the number of Epochs,
while the Prediction Time (PT) is less than a millisecond
in all cases. Finally, we present the error metrics results
in order to evaluate the model’s performance. The TT is
in the order of minutes which is very small. The MAE,
RMSE and MAPE values are really small with a MAPE
average for 1000000 epochs of 0.217 for the waveforms

and 0.0032 for the peaks. This means that the model can
estimate with great accuracy the transition state of the
circuit and therefore the large signal transient operation.

Fig. 6 shows the value of the MAPE metric when
training the model for 1000, 3000, 5000, 100000,
200000, 500000 and 1000000 Epochs. The horizontal
axis portrays the TT needed for the model’s to train.
It is clear that with more Epochs the Error minimizes
while the TT increases. For 1000000 Epochs the TT
ranges from 60 to 70 minutes. As it is obvious through
the benchmarking of the ML model results versus to
the standard transistor level simulation, the accuracy
obtained is way satisfactory while the simulation time
is minimal. This is valid, either the ML estimates the
impact of the transistor sizing through the number of
fingers sweep, or the inductance value. As clearly de-
picted in Fig.5, the higher the training time, the better
the accuracy obtained.

Table I. Results

Inductance
Waveforms Peaks

Epochs L (mH) TT (min) PT (ms) RMSE MAE MAPE Peak TT (min) PT (ms) RMSE MAE MAPE

200000
0.004 13.54 0.84 0.0425 0.0299 0.64 1st 11.93 0.46 0.0128 0.0098 0.0028
0.38 13.4 0.86 0.0455 0.027 0.3364 3rd 11.83 0.78 0.0178 0.0138 0.0048

1 14.9 0.87 0.1019 0.0688 0.789 5th 7.8 0.44 0.0162 0.0112 0.0043

1000000
0.004 67 0.57 0.0328 0.0192 0.427 1st 59.45 0.51 0.0087 0.0058 0.0017
0.38 67.42 0.58 0.0387 0.0286 0.2558 3rd 89.64 0.5 0.014 0.0104 0.0036

1 71.47 0.44 0.431 0.0231 0.3363 5th 37.95 0.5 0.0141 0.0081 0.0031
Number of Fingers

Waveforms Peaks

Epochs NF TT (min) PT (ms) RMSE MAE MAPE Peak TT (min) PT (ms) RMSE MAE MAPE

200000
1 8.19 0.76 0.0327 0.0187 0.00945 1st 7.55 0.43 0.0285 0.0107 0.0031

354 9.64 0.52 0.0896 0.0406 0.0583 3rd 7.53 0.43 0.0297 0.0145 0.005
960 8.89 0.77 0.0437 0.0254 0.6482 5th 7.56 0.43 0.0342 0.015 0.0055

1000000
1 40.75 0.55 0.016 0.0112 0.00851 1st 37.73 0.47 0.0262 0.0077 0.0023

354 48.66 0.56 0.0176 0.0083 0.0469 3rd 37.38 0.51 0.0294 0.0143 0.0043
960 44.64 0.55 0.0558 0.0478 0.2295 5th 37.6 0.5 0.0321 0.0132 0.0043
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(a) Waveforms

(b) Peaks
Fig. 6. MAPE values for different amount of Training Time (TT)

V. CONCLUSIONS

An innovative Machine Learning based modeling and
simulation approach was developed, accurate to estimate
efficiently the large signal - time domain operation of a
non linear circuit vehicle, which in this case is CMOS a
boost converter. Specific design parameters were used as
input data, such as the inductance value of the converter
and the sizing of the MOSFET devices (and therefore
the impact of the impedances of the devices) to train the
ML model. The ML provides high accurate results as
long as the training time is adequate enough. The time
domain response is ML wise, simulated accurately and
the peaks of the converter output signal bounce behavior
are efficiently captured. The above methodology enables
high design cycle speed up since the large number of
standard SPECTRE or SPICE time domain parametric
simulations are now avoided.
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